Redundant Connection
In this problem, a tree is an undirected graph that is connected and has no cycles. You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph. Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input.
Redundant Connection

In this problem, a tree is an undirected graph that is connected and has no cycles. You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph. Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input.

Example 1:
Input: [[1,2],[1,3],[2,3]]
Output: [2,3]
Input
arr =[[1,2],[1,3],[2,3]]

Start Union Find

1

2

3

Variables
No variables to display
DepthFunction Call
Stack empty
0/10